પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x_{i} & 1 & 2 & 3 & 4 & 5 & \ldots & \ldots & n \\ \hline x_{i}^{2} & 1 & 4 & 9 & 16 & 25 & \ldots & \ldots & n^{2} \\ \hline \end{array}$

Now, $\quad \Sigma x_{i}=1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$

and $\Sigma x_{i}^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

$\therefore \quad \alpha=\sqrt{\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}}=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\frac{n^{2}(n+1)^{2}}{4 n^{2}}}$

$=\sqrt{\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}}=\sqrt{\frac{2\left(2 n^{2}+3 n+1\right)-3\left(n^{2}+2 n+1\right)}{12}}$

$=\sqrt{\frac{4 n^{2}+6 n+2-3 n^{2}-6 n-3}{12}}=\sqrt{\frac{n^{2}-1}{12}}$

Similar Questions

જો વિતરણના વિચરણ અને પ્રમાણિત વિચલનનો સહગુણક અનુક્રમે $50\%$  અને $20\%$  હોય તો તેનો મધ્યક શું થાય ?

ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$

  • [JEE MAIN 2023]

નીચે આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો : 

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

સંખ્યાઓ $a, b, 8, 5, 10$ નો મધ્યક $6$ છે તથા તેમનું વિચરણ $6.8$ છે.જો આ સંખ્યાઓનું મધ્યક થી સરેરાશ વિચલન $M$હોય,તો $25\,M=\dots\dots\dots$ 

  • [JEE MAIN 2022]

પ્રથમ $n$ પ્રાકૂર્તિક સંખ્યાનું વિચરણ $10$ છે અને પ્રથમ $m$ યુગ્મ પ્રાકૃતિક સંખ્યાનું વિચરણ $16$ હોય તો $m + n$ મેળવો.

  • [JEE MAIN 2020]